


Slurm Wiki and Tools - a *Niflheim* site report

Dr. Ole Holm Nielsen
Department of Physics
Technical University of Denmark (DTU)

Email: Ole.H.Nielsen@fysik.dtu.dk

Wiki: https://wiki.fysik.dtu.dk/Niflheim_system/

Tools: https://github.com/OleHolmNielsen/Slurm tools

Slurm documentation and our Wiki

- SchedMD offers many excellent pages for Slurm administrators in the <u>Documentation</u> pages, and everyone is recommended to consult these pages for authoritative information.
- Our site started working with *Slurm* in 2015, but found the documentation back then scant and lacking both in overview and in the details.
- As a *Slurm* newbie, I started **writing down everything** I did to get *Slurm* up and running on our CentOS 7 based cluster, including **exact Linux commands** and configuration files.
- This became a public **Slurm Wiki**, now at https://wiki.fysik.dtu.dk/Niflheim_system/ (mirrored at *ReadTheDocs* https://niflheim-system.readthedocs.io/en/latest/)
 The Wiki has apparently been useful to other *Slurm* sites as well.
- A user-driven Wiki may significantly ease the learning curve for deploying Slurm.

Slurm support

- Our **Slurm support contract** with *SchedMD* has been important for improving the information in the Wiki, and conversely helped to improve a few of *Slurm's* documentation pages.
- The **excellent** Slurm support from SchedMD has helped us a lot in providing trouble-free operations and a high productivity of our cluster employing only a very minimal IT staff.

Slurm Wiki overview

- The Wiki discusses **selected** *Slurm* **features** needed by relatively simple small-to-medium sized clusters (10s to a few 1000s of nodes).
- **Exact Linux commands** for EL8 and EL9 (*RHEL*, *RockyLinux*, *AlmaLinux*, etc.) are given, in contrast to generic instructions which are valid for any Linux distribution, but have to be interpreted by the user to obtain specific OS commands.
- This Wiki is based on **actual user experiences** and requirements as we upgraded *Slurm* through **every major version** since 15.08, and started to exploit new *Slurm* features along the way.
- **Support cases** with *SchedMD*, as well as discussions on the **slurm-users** mailing list, are incorporated into the Wiki as reference information.

Wiki highlights: Installation and Upgrading

- Wiki page: https://wiki.fysik.dtu.dk/Niflheim_system/Slurm_installation/
- Setting up system accounts, how to install Munge, and other prerequisite RPM packages.
- Building and installing RPMs on EL8 and EL9 systems.
- Slurm log file rotation.
- **Upgrading major releases** should be done carefully:
 - Slurm database upgrade dry-run on a test node (lots of details provided).
 - Upgrade of slurmctld and possibly migrating it to a new server.
 - Upgrade of slurmd is usually straightforward, also on a running production system.

- Wiki page: https://wiki.fysik.dtu.dk/Niflheim_system/Slurm_configuration/
- "Configless Slurm" testing.
- Configuring the LBNL Node Health Check (NHC) package.
- Building <u>FreeIPMI</u> power control and monitoring into *Slurm*.
- Kernel configuration: ARP cache, maximum number of open files.
- PAM configuration for <u>pam_slurm_adopt</u> SSH login restrictions.
- Temporary job scratch directories (job_container/tmpfs plugin).
- EL8/EL9 firewalld configuration.

Wiki highlights: Database

- Wiki page: https://wiki.fysik.dtu.dk/Niflheim_system/Slurm_database/
- **Initial setup** of *MariaDB*.
- Setting database purge parameters for old records.
- Database backup (using logrotate) and database restore.
- Migration of slurmdbd to a new server.

Wiki highlights: Slurm Operations

- Wiki page: https://wiki.fysik.dtu.dk/Niflheim_system/Slurm_operations/
- Configure Slurm RPC rate limiting.
- Expanding and collapsing host lists.
- Passwordless SSH configuration.
- ClusterShell parallel commands: Installation, configuration and usage.
- Compute node OS and firmware rolling upgrades during normal operations.

Wiki highlights: Power Saving Configuration

- Wiki page: https://wiki.fysik.dtu.dk/Niflheim_system/Slurm_cloud_bursting/
- Power saving can be used both for on-premise nodes as well as cloud nodes.
- Shutting down ("suspend") nodes for saving electricity and cloud costs.
- See also the previous presentations SLUG'22 <u>Pathfinding into the clouds</u> and SLUG'23 <u>Saving Power with Slurm</u>.
- Compute **nodes** are now turned off and on dynamically by slurmctld as required, enabling significant cost savings.

Wiki highlights: Power monitoring

- Wiki page: https://wiki.fysik.dtu.dk/Niflheim system/Slurm configuration/#power-monitoring-and-management
- After configuring FreeIPMI, you can enable Power monitoring in slurm.conf using AcctGatherEnergyType=acct gather energy/ipmi
 - A serious **IPMI-related bug in** *slurmd* was fixed in 23.02.7 (<u>Bug 17639</u>).
- Enable IPMI Data Center Manageability Interface (**DCMI**) power monitoring.
 - Problematic **non-DCMI-compliant BMCs** (e.g., *Xfusion*, *Huawei* <u>Bug 17704</u>).
- When IPMI power monitoring has been enabled, it becomes possible (in principle, and for jobs using nodes exclusively) to make **energy accounting of individual jobs**.
 - Job energy accounting is still not fully reliable as of *Slurm* 23.11.10/24.05.3 due to a number of *slurmd* issues (bug 20207).

Slurm tools from the Niflheim GitHub site

- *Niflheim* tools are available from https://github.com/OleHolmNielsen/Slurm tools
- These tools were developed over time when we needed to monitor the cluster operations, when we needed to configure Slurm, and when we needed to implement additional functionality.
- These tools mostly employ standard *Slurm* commands such as sinfo, squeue, scontrol, sacctmgr, etc.
- The most important tools are discussed in the following pages:

How many jobs and users are in the queue?

\$ showuserjobs

Batch job status for cluster niflheim at Thu Aug 29 16:34:03 CEST 2024

Node states summary:

allocated	678	nodes	(96.86%)	29360	CPUs	(94.78%)		
drained	3	nodes	(0.43%)	272	CPUs	(0.88%)		
draining	4	nodes	(0.57%)	288	CPUs	(0.93%)		
idle	7	nodes	(1.00%)	528	CPUs	(1.70%)		
idle~	5	nodes	(0.71%)	288	CPUs	(0.93%)	Powered	off
mixed	2	nodes	(0.29%)	160	CPUs	(0.52%)		
planned	1	nodes	(0.14%)	80	CPUs	(0.26%)		
Total	700	nodes	(1	L00.00%)	30976	CPUs	(1	L00.00%)		

Job summary: 3582 jobs total (max=20000) in all partitions.

Username/		Runnin		Limit	Pendin		
Totals	Account	Jobs	CPUs	CPUs	Jobs	CPUs	Further info
========		=====	=====			=====	=======================================
GRAND_TOTAL	ALL	667	29576	Inf	2915	119943	Running+Pending=149519 CPUs, 52 users
ACCT_TOTAL	camdvip	257	11192	Inf	884	37346	Running+Pending=48538 CPUs, 9 users
ACCT_TOTAL	catvip	153	7226	Inf	147	6248	Running+Pending=13474 CPUs, 6 users
ACCT_TOTAL	ecsvip	163	6934	Inf	1786	70285	Running+Pending=77219 CPUs, 18 users
manja	camdvip	107	4984	5000	74	4272	User full names
olich	catvip	117	4968	5000	143	5560	Oser full flatfles
kartsh	camdvip	86	3632	5000	324	13248	
	_						

What is the status of Slurm partitions?

\$ showpartitions

Partition statistics for cluster niflheim at Thu Aug 29 16:13:16 CEST 2024 Partition #Nodes #CPU cores Cores pending Job Nodes MaxJobTime Cores Mem/Node Name State Total Idle Total Idle Resorc Other Day-hr:mn /node (GB) Min Max xeon24e18:* 1 infin 2-02:00 256+ 186 4464 0 11847 24 up xeon24e18 test 48 24 256 48 0 1 infin up xeon24e18 week 20 480 1 infin 7-00:00 24 256 0 0 up 1 infin 512 xeon24e18 512 12 288 0 0 2-02:00 24 up xeon40e18 320 12800 160 21720 1 infin 2-02:00 40 384 up xeon40el8 768 12 480 80 1640 1 infin 2-02:00 768 40 up 1 infin 2-02:00 384 xeon40el8 clx 128 5120 80 40 0 up 96 5376 69384 1 infin 2-02:00 56 512 xeon56 0 up sm3090e18 560 464 320 1 infin 7-00:00 80 191+ up 768 sm3090el8 768 320 224 1 infin 7-00:00 80 up 0 sm3090 devel 72 1 infin 12:00 80 191 up xeon32 week 64 0 32 1 infin 7-00:00 32 4096 up xeon32 4096 128 64 1 infin 2-02:00 32 4096 0 up 7-00:00 a100 week 256 224 1 infin 128 512 up 0 a100 512 2-02:00 512 480 0 1 infin 128 up 1 infin 68 6528 6432 2-02:00 96 768 epyc96 up 0

Note: The cluster default partition name is indicated by :*

What are the nodes and jobs doing?

- The pestat command can give many different kinds of node and job overviews.
- The usual *Slurm* options (and more) can be used: -p, -u, -A, -q, -t, -w, -j, ...
- For example:

```
$ pestat -F -p epyc96
Print only nodes that are flagged by * (RED nodes)
Print only nodes in partition epyc96
Hostname
               Partition
                             Node Num CPU
                                           CPUload
                                                    Memsize
                                                                      Joblist
                                                             Freemem
                            State Use/Tot
                                           (15min)
                                                       (MB)
                                                                (MB)
                                                                      JobID User ...
e005
                           drain*
                                             0.00
                                                     768000
                                                              769821
                  epyc96
                                       96
e006
                  epyc96
                           drain* 0 96
                                          0.00
                                                     768000
                                                              769315
e009
                  ерус96
                          idle
                                       96 96.24*
                                                     768000
                                                              671486
e018
                  epyc96
                           alloc
                                       96 104.17*
                                                     768000
                                                              742671
                                                                      7625705 yundi
                  epyc96
                                                     768000
                                                              446522
e024
                           alloc
                                          103.66*
                                                                      7630058 laumu
                  ерус96
e027
                           alloc
                                          101.91*
                                                     768000
                                                              551690
                                                                      7630058 laumu
e028
                  epyc96
                           alloc
                                       96 102.26*
                                                     768000
                                                              751016
                                                                      7625705 yundi
e064
                  epyc96
                           alloc
                                                     768000
                                                              740925
                                                                      7625706 yundi
                                   96
                                       96 103.70*
                                                                      7625706 yundi
e065
                  epyc96
                           alloc
                                       96 102.28*
                                                     768000
                                                              750932
                                   96
```


When will draining nodes become idle?

- The pestat command's "-E" (Job *EndTime*) option can be combined with the "-t draining" option.
- Sorting on the job *EndTime* (in column 11).
- For example:

```
E -t draining -C | sort -k 11
Force colors ON in output
                            Node Num CPU CPUload Memsize Freemem Joblist
              Partition
Job EndTime is printed after each Job ID/user
Select only nodes with state=draining
                           State Use/Tot
                                                                    JobID User EndTime ...
                                          (15min)
                                                      (MB)
                                                             223429 7637111 olich 2024-08-31T01:48:46
x192
                           drng* 24 24
                                           24.31
                                                    256000
             xeon24e18*
              xeon40e18
                                           40.15
a128
                           drng* 40 40
                                                    384000
                                                             350799 7637214 olich 2024-08-31T15:31:25
e001
                           drng* 96 96
                                           97.65
                                                    768000
                                                             746859 7637913 s222468 2024-08-30T15:55:48
                 epyc96
                           drng* 32 128
                                           1.72*
              a100 week
                                                             502586 7630936 magstr 2024-09-04T09:10:57
sd651
                                                    512000
```


What are the user processes in a job or a node?

```
psjob
        7606946
JORID
          PARTITION NODES TASKS USER
                                        ARRAY JOB ID ARRAY TASK ID START TIME
                                                                                      TIME
                                                                                                    TIME LIMIT
                                        7606946
                                                                   2024-08-28T05:16:33 1-11:11:06
7606946
         xeon32 wee1
                         32
                               mhfga
                                                     N/A
                                                                                                    6-21:00:00
NODELIST: b021
b021
    PID NLWP S USER
                        STARTED
                                    TIME %CPU
                                               RSS COMMAND
                      Aug 28 00:00:00 0.0 3872 /bin/bash /var/spool/slurmd/job7606946/slurm sc
 220255
          1 S mhfga
 220346 1 S mhfga
                       Aug 28 00:00:00 0.0 3108 /bin/bash /home/energy/modules/software/QChem/6
 220359
         95 S mhfga
                         Aug 28 41-08:57:08 2822 3190520496 /home/energy/modules/software/QChem/6.0
Total: 3 processes and 97 threads
Uptime: 16:27:39 up 10 days, 5:59, 0 users, load average: 31.92, 32.26, 32.45
 psnode) s006
Node s006 information:
          PARTITION CPUS CPU LOAD S:C:T
NODELIST
                                             MEMORY
                                                     STATE
                                                                 REASON
           sm3090el8 80
                          2.00
                                    4:10:2
s006
                                             768000
                                                     mixed
                                                                 none
           sm3090el8 80
s006
                           2.00
                                    4:10:2
                                              768000 mixed
                                                                 none
Jobid list: 7639340 7642783
Node s006 user processes:
    PID NLWP S USER
                        STARTED
                                     TIME %CPU
                                                RSS COMMAND
   3772
          1 S magstr 10:01:13 00:00:00 0.0 3260 /bin/bash /var/spool/slurmd/job7639340/slurm sc
                      10:01:13 06:26:53 99.6 3082444 python fast molvae/sample.py --nsample 50000
   3777
           4 R magstr
                      13:31:47 00:00:00 0.0 3296 /bin/bash /var/spool/slurmd/job7642783/slurm sc
   7155
          1 S magstr
   7343
           6 R magstr
                       13:41:22 02:47:46 99.7 3378856 python -u /home/energy/magstr/git/FastJTNNpy3
Total: 4 processes and 12 threads
```

DTU Fysik, Danmarks Tekniske Universitet 16

Notifying users about badly behaving jobs

 Sending an E-mail alert to users when the Slurm administrator believes the job is using resources in an inefficient or incorrect manner:

```
$ notifybadjob 7642902
```

Please select one of the following reasons why you want to Notify about this job:

- 1. Your job is doing no useful work and is essentially dead.
- 2. Your job has grossly exceeded the available physical RAM memory and is very inefficient.
- 3. Your job has grossly exceeded the physical RAM memory available per CPU core.
- 4. Your job is running too many processes/threads and is overloading the CPU(s).
- 5. Your job is using more CPU cores than your job has requested.
- 6. Your job is not using all of the CPU cores or GPUs that you have requested.
- 7. Your job is not using all of the GPUs that you have requested.

Job submit plugin for checking job sanity

- The **Slurm job_submit plugin** is a very useful feature for making sure that user jobs are checked for sanity (e.g., that numbers of CPU cores and/or GPUs requested correspond to the requested node hardware).
- Only trivial *job_submit* plugins can be found in the *Slurm* documentation or by searching the internet ⊗
- We provide an example job_submit Lua plugin with a number of configurable checks that
 can be customized according to the site's job policies:
 https://github.com/OleHolmNielsen/Slurm tools/tree/master/plugins
 - This job_submit.lua plugin has been extremely useful for catching user mistakes when submitting to the wrong partitions, or request an incorrect number of CPUs/GPUs, etc.

Managing accounts when adding/removing users

- When system passwd and group databases change, how do we synchronize this with the Slurm accounts?
 - We propose to use the already existing UNIX passwd and group information to define a mapping onto the Slurm account tree hierarchy. See details in SLUG'19 Slurm Account Synchronization with UNIX Groups and Users
- The slurmusersettings tool can create, update or delete users in the *Slurm* database based on the system passwd database. It can be used to set or update user limits.
- The showuserlimits tool displays user limits by parsing the highly convoluted output from the scontrol show assoc mgr command.
- The showjobreasons tool shows a summary of reasons for jobs being in the *Pending* state.

Slurm accounting

- The slurmreportmenth tool conveniently generates monthly, weekly, and yearly accounting statistics from *Slurm* using the sreport command.
- The slurmacct and topreports tools (which use sacct) have some advantages over the sreport command:
 - Partition specific accounting is possible.
 - Average CPU count (job parallelism) is printed.
 - Average waiting time in the queue is printed (answer to "My jobs wait for too long").
 - Users' full name is printed (useful to managers).

Conclusions

- SchedMD offers a lot of excellent Slurm documentation which should be consulted first.
- However, there still is a need for **exact Linux commands**, exact RPM package versions, and configuration file details for clusters that employ an "*Enterprise Linux"* family operating system (*RHEL*, *RockyLinux*, *AlmaLinux*, etc.).
- Our Wiki site offers many additional details regarding Slurm installation and upgrading, configuration of services, and procedures for daily operations.
- Energy and cloud savings are important and can be configured with Slurm.
- We provide Slurm Tools on GitHub that significantly improves the management of jobs, nodes, power consumption, Slurm accounts, users, and user limits.
- Some of the tools provide (possibly more useful) Slurm accounting reports.