
Slurm’s REST API

Nathan Rini

● Please feel free to interrupt at anytime with questions.
○ I will ask you wait if the question is answered later in the presentation.

● Comments and constructive complaints are always welcome
○ I may ask to defer discussion to finish the presentation on time or if question is not

applicable to other sites.
● If you don’t get your questions answered or you have more follow up questions, please

open a ticket or find me after.
● Your feedback on slurmrestd matters to us and helps us with the future roadmap.

Questions?

Intro to slurmrestd

What is the Slurm REST API?

Short answer:
Slurm without command line

● Slightly longer answer:
○ Allows users to query Slurm via HTTP requests (AKA restful API)

■ Supports data formatted as JSON or YAML
○ OpenAPI v3 (aka Swagger v3) compliant to allow sites to easily generate clients
○ JSON Web Token (JWT) authentication for clients outside of MUNGE security

perimeter
■ Allowing for partially trusted clients or using site authentication service

● Exhaustive answers with live demos can be covered during Slurm onsite trainings:
○ Please email sales@schedmd.com to setup a training session.

What is the Slurm REST API?

https://restfulapi.net/
https://www.json.org/json-en.html
https://yaml.org/
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.1.0.md
https://swagger.io/specification/
https://tools.openapis.org/categories/code-generators.html
https://datatracker.ietf.org/doc/html/rfc7519
https://github.com/dun/munge
https://github.com/dun/munge
mailto:sales@schedmd.com

Example use cases via CLI

● Use a bash function to make calling curl easier
○ Example to query slurmrestd via TCP socket:

Preparation: Setup shell

function rest()
{
 path=$1
 shift
 unset SLURM_JWT
 export $(scontrol token lifespan=10)
 curl -s -H "X-SLURM-USER-TOKEN:${SLURM_JWT}" "http://localhost:8090/${path}"
"$@";
}

● User name is only required to act as a proxy, otherwise user encoded in token in used:
○ -H "X-SLURM-USER-NAME:$(whoami)"

● Get job_id of all jobs known to slurmctld:

● Get state of first Array Job task with state of all jobs known to slurmctld:

● Get total number of tasks of all running jobs:

Query jobs information

$ rest slurm/v0.0.40/jobs | jq -r '.jobs[].job_id'
193
194

$ rest slurm/v0.0.40/job/194_1 | jq -r '.jobs[].job_state[]'
PENDING

$ rest slurm/v0.0.40/jobs | jq -r '.jobs[] | select(.job_state[] == "RUNNING") | .tasks.number'
| awk '{ sum += $1; } END { print sum; }'
10

● job.json:

Example Job description

{
 "script": "#!/bin/bash\nsrun uptime",
 "job": {
 "environment": ["PATH=/bin/:/usr/bin/:/sbin/"],
 "account": "test",
 "name": "test slurmrestd job",
 "memory_per_node": { "set": true, "number": 100 },
 "tasks": 5,
 "nodes": "2-10"
 }
}

● array_job.json:

Example Array Job description

{
 "script": "#!/bin/bash\nsrun uptime",
 "job": {
 "environment": ["PATH=/bin/:/usr/bin/:/sbin/"],
 "account": "test",
 "array": "100",
 "name": "test slurmrestd array job",
 "memory_per_node": { "set": true, "number": 100 },
 "tasks": 5,
 "nodes": "2-10"
 }
}

● het_job.json:

Example HetJob description

{
 "script": "#!/bin/bash\nsrun uptime",
 "jobs": [
 {
 "environment": ["PATH=/bin/:/usr/bin/:/sbin/"],
 "account": "test",
 "name": "test slurmrestd job",
 "memory_per_node": { "set": true, "number": 100 },
 "tasks": 5,
 "nodes": "2-10"
 },
 { "memory_per_node": { "set": true, "number": 15 }, "tasks": 1, "nodes": 1,
 "environment": ["PATH=/bin/:/usr/bin/:/sbin/"] },
 { "nodes": 1, "environment": ["PATH=/bin/:/usr/bin/:/sbin/"] }
]
}

Submit example jobs

$ rest slurm/v0.0.40/job/submit -H 'Content-Type:application/json' --data-binary @job.json
| jq -r '.result.job_id'
231

$ rest slurm/v0.0.40/job/submit -H 'Content-Type:application/json' --data-binary
@array_job.json | jq -r '.result.job_id'
232

$ rest slurm/v0.0.40/job/submit -H 'Content-Type:application/json' --data-binary
@het_job.json | jq -r '.result.job_id'
233

● Cancel a job:

● Signal a job with SIGINT:

● Change number tasks in a job:

Make sure to always call `--data-binary` and not `--data` when using curl to avoid the payload
being corrupted.

Control Jobs

$ rest slurm/v0.0.40/job/236 -X DELETE

$ rest slurm/v0.0.40/job/236?signal=SIGINT -X DELETE

$ rest slurm/v0.0.40/job/239 -H 'Content-Type:application/json' --data-binary '{"tasks":"10"}'

Example use cases via Python Client

● Install openapi-generator-cli following procedure first
● Compile and install library for client

Preparation: Compile and install generated OpenAPI client

$ slurmrestd unix:slurmrestd.socket -s slurmctld,slurmdbd -d v0.0.40 &
$ curl --unix-socket slurmrestd.socket 'http://host/openapi/v3' > openapi.json
$ kill %1
$ openapi-generator-cli generate -i openapi.json -g python -o py_api_client
$ virtualenv test
$ source test/local/bin/activate
$ cd py_api_client/
$ pip install -r requirements.txt .

https://openapi-generator.tech/docs/installation/

● Run python3 in interactive mode and setup environment for all examples:

Preparation: start and configure python interactive

$ python3
from pprint import pprint
import openapi_client
import subprocess
import os
import re
from openapi_client.apis.tags.slurm_api import SlurmApi
from openapi_client.apis.tags.slurmdb_api import SlurmdbApi
from openapi_client import ApiClient as Client
from openapi_client import Configuration as Config
c = Config()
c.host = "http://localhost:8080/"
c.access_token = subprocess.run(['scontrol', 'token', 'lifespan=9999'], check=True,
capture_output=True, text=True).stdout.replace('SLURM_JWT=','').replace('\n','')
slurm = SlurmApi(Client(c))
slurmdb = SlurmdbApi(Client(c))

http://localhost:8080/

● HTTP methods are implemented as functions in slurm and slurmdb objects:

Inspection of generated OpenAPI client

print([a for a in dir(slurmdb) if re.match(r'slurmdb', a)])
['slurmdb_v0040_delete_account', 'slurmdb_v0040_delete_association',
'slurmdb_v0040_delete_associations', 'slurmdb_v0040_delete_cluster',
'slurmdb_v0040_delete_single_qos', 'slurmdb_v0040_delete_user',
'slurmdb_v0040_delete_wckey', 'slurmdb_v0040_get_account',
'slurmdb_v0040_get_accounts', 'slurmdb_v0040_get_association',
'slurmdb_v0040_get_associations', 'slurmdb_v0040_get_cluster',
…(truncated)…

print([a for a in dir(slurm) if re.match(r'slurm', a)])
['slurm_v0040_delete_job', 'slurm_v0040_delete_node', 'slurm_v0040_get_diag',
'slurm_v0040_get_job', 'slurm_v0040_get_jobs', 'slurm_v0040_get_licenses',
'slurm_v0040_get_node', 'slurm_v0040_get_nodes', 'slurm_v0040_get_partition',
'slurm_v0040_get_partitions', 'slurm_v0040_get_ping', 'slurm_v0040_get_reservation',
'slurm_v0040_get_reservations', 'slurm_v0040_get_shares', 'slurm_v0040_post_job',
'slurm_v0040_post_job_submit', 'slurm_v0040_post_node']

● Get job_id of all jobs known to slurmctld:

● Get state of first Array Job task with state of all jobs known to slurmctld:

Query jobs information

jobs = slurm.slurm_v0040_get_jobs()
for job in jobs.body['jobs']:

print(job['job_id'])

jobs = slurm.slurm_v0040_get_jobs()
for job in jobs.body['jobs']:

for state in job['job_state']:
print(state)

● Get total number of tasks of all running jobs:

Query jobs information

jobs = slurm.slurm_v0040_get_jobs()
c=0
for job in jobs.body['jobs']:
 if 'RUNNING' in job['job_state']:
 c += job['tasks']['number']
print(c)

● Submit example job:

Example Job description

from openapi_client.model.v0040_job_submit_req import V0040JobSubmitReq
from openapi_client.model.v0040_job_desc_msg import V0040JobDescMsg

job = V0040JobSubmitReq(script='#!/bin/bash\nsrun uptime',
job=V0040JobDescMsg(partition='debug',name='test
job',environment=['PATH=/bin/:/sbin/:/usr/bin/:/usr/sbin/'],current_working_directory='/tmp/'))

print(slurm.slurm_v0040_post_job_submit(body=job).body['result']['job_id'])

● Submit example job:

Example Array Job description

from openapi_client.model.v0040_job_submit_req import V0040JobSubmitReq
from openapi_client.model.v0040_job_desc_msg import V0040JobDescMsg

job = V0040JobSubmitReq(script='#!/bin/bash\nsrun uptime',
job=V0040JobDescMsg(array='100',partition='debug',name='test
job',environment=['PATH=/bin/:/sbin/:/usr/bin/:/usr/sbin/'],current_working_directory='/tmp/'))

print(slurm.slurm_v0040_post_job_submit(body=job).body['result']['job_id'])

● Submit example job:

Example HetJob description

from openapi_client.model.v0040_job_submit_req import V0040JobSubmitReq
from openapi_client.model.v0040_job_desc_msg import V0040JobDescMsg
from openapi_client.model.v0040_uint32_no_val import V0040Uint32NoVal

job = V0040JobSubmitReq(script='#!/bin/bash\nsrun uptime',
jobs=[V0040JobDescMsg(partition='debug',name='test
job',environment=['PATH=/bin/:/sbin/:/usr/bin/:/usr/sbin/'],memory_per_node=V0040Uint32
NoVal(set=True,number=100),tasks=5,nodes='2-10'),
V0040JobDescMsg(memory_per_node=V0040Uint32NoVal(set=True,number=100),tasks=
1,nodes='1',environment=['PATH=/bin/:/sbin/:/usr/bin/:/usr/sbin/']),V0040JobDescMsg(node
s='1',environment=['PATH=/bin/:/sbin/:/usr/bin/:/usr/sbin/'])])

print(slurm.slurm_v0040_post_job_submit(body=job).body['result']['job_id'])

● Cancel a job:

● Signal a job with SIGINT:

Control Jobs

print(slurm.slurm_v0040_delete_job(path_params={'job_id': '3694'}).response.reason)

print(slurm.slurm_v0040_delete_job(path_params={'job_id': '3694'},query_params={'signal':
'SIGINT'}).response.reason)

● Change number tasks in a job:

Control Jobs

from openapi_client.model.v0040_job_submit_req import V0040JobSubmitReq
from openapi_client.model.v0040_job_desc_msg import V0040JobDescMsg
from openapi_client.model.v0040_uint32_no_val import V0040Uint32NoVal

job = V0040JobDescMsg(name='updated test
job',environment=['PATH=/bin/:/sbin/:/usr/bin/:/usr/sbin/'],priority=V0040Uint32NoVal(set=Tr
ue,number=0))

print(slurm.slurm_v0040_post_job(path_params={'job_id':'3697'},body=job).response.reaso
n)

Slurm CLI: YAML & JSON

● Functionality from slurmrestd has been added to existing CLI commands to provide JSON
and YAML output.

● Following commands (at least partially) support new output formats:

JSON and YAML for the command line

sshare –json sshare –yaml

sacct –json sacct –yaml

sacctmgr –json sacctmgr –yaml

scontrol –json scontrol –yaml

sdiag –json sdiag –yaml

sinfo –json sinfo –yaml

sprio –json sprio –yaml

squeue –json squeue –yaml

● Get job_id of all jobs known to slurmctld:

● Get state of first Array Job task with state of all jobs known to slurmctld:

● Get total number of tasks of all running jobs:

Query jobs information

$ squeue –json | jq -r '.jobs[].job_id'
193
194

$ scontrol show job –json 194_1 | jq -r '.jobs[].job_state[]'
PENDING

$ scontrol show jobs –json | jq -r '.jobs[] | select(.job_state[] == "RUNNING") |
.tasks.number' | awk '{ sum += $1; } END { print sum; }'
10

● CLI commands
○ –yaml/–json without an argument defaults to latest version (v0.0.40 on 23.11)

● slurmrestd
○ slurmrestd supports loading multiple data_parser plugins at once

■ 23.02:
■ s
■ 23.11:

Selecting data_parser plugin version (23.11+)

sinfo –json=v0.0.39
sinfo –json=v0.0.40
sinfo –json

sinfo –yaml=v0.0.39
sinfo –yaml=v0.0.40
sinfo –yaml

slurmrestd -d v0.0.39 -s v0.0.39,dbv0.0.39

slurmrestd -d v0.0.39,v0.0.40 -s v0.0.39,dbv0.0.39,slurmdbd,slurmctld

● Requesting OpenAPI schema for output (23.11+, v0.0.40+)
○

● Produces output similar to an OpenAPI schema to allow caller to know the format of the
expected result.

○ sinfo has no equivalent request in slurmrestd.
● OpenAPI standard only applies to URL paths:

○ Only the schema for output is returned instead of a full OpenAPI specification

Command Line - OpenAPI specification

sinfo –json=v0.0.40+spec_only

Ways to deploy Slurm’s REST API

MUNGE security domain

MUNGE and SSH based Slurm (aka Slurm without REST API)

slurmctld

slurmdbd

slurmd
slurmd

login node(s)

slurmd
slurmd

slurmd

sshd

client
client

client
client

client
client

client

Authentication provided by ssh
connections. MUNGE honors
user/group as reported by kernel.

MUNGE security domain

Slurm REST API using only MUNGE and command line

slurmctld

slurmdbd

slurmd
slurmd

MUNGE Host

slurmd
slurmd

slurmd

slurmrestd
(Inet Mode)

shell script
(via pipes)

User Workflow
Manager

clientsshd

Authentication provided by
ssh connections. MUNGE
honors user/group as reported
by kernel.

Unprivileged client invokes
slurmrestd directly via pipes.

JWT authentication

Slurm REST API using JSON web tokens in an existing cluster

MUNGE security domain

slurmctld

slurmdbd

slurmd
slurmd

slurmd
slurmd

slurmd

slurmrestd

client
client

client
client

client
client

client

JSON Web Tokens (JWT) used to authenticate
clients. JWTs used to specify user behind requests.
JWT used to submit job as given user. MUNGE used
to handle all internal authentication for job.

Site specific authenticationJWT authentication

Slurm REST API for the whole site or even the Internet

MUNGE security domain

slurmctld

slurmdbd

slurmd
slurmd

slurmd
slurmd

slurmd

Authenticating Proxy

slurmrestd

Authenticating Proxy can use token for SlurmUser to proxy
requests for any user on the cluster following site designated
security rules. This allows use of external authentication
system such as Radius or Active Directory.

User/groups must have 1:1 mapping between security realms.
All client connections must be TLS wrapped by proxy.

client

Site authentication system

Public key (RS256) JWT authentication

Slurm REST API from the Cloud

MUNGE security domain

slurmctld

slurmdbd

slurmd
slurmd

slurmd
slurmd

slurmd

slurmrestd

JWT authentication configured with trusted JWKS certificates
will honor signed JWTs from a common identity service.

Examples: AWS Cognito, Keycloak,or Azure AD.

Slurm will not be able to generate JWT tokens but only verify
them.

client

JWT identity service
JWKS
certificate

Signed JWT

https://aws.amazon.com/cognito/
https://www.keycloak.org/
https://azure.microsoft.com/en-us/products/active-directory

JWT authentication

Slurm REST API for all the clusters

Cluster A:
MUNGE security domain

slurmctld

slurmdbd

slurmd
slurmd

slurmd
slurmd

slurmd

Cluster A:
slurmrestd

Cluster B:
MUNGE security domain

slurmctld

slurmdbd

slurmd
slurmd

slurmd
slurmd

slurmd

Cluster B:
slurmrestd

Cluster C:
MUNGE security domain

slurmctld

slurmdbd

slurmd
slurmd

slurmd
slurmd

slurmd

Cluster C:
slurmrestd

client

Setup

● Setup procedure: https://slurm.schedmd.com/jwt.html
● RFC7519 compliant implementation
● Supported algorithms:

○ HS256 (shared secret)
○ RS256 (public key)

● Users and groups on cluster must match token’s user exactly
● Implementation is limited and can not be used to communicate with slurmd daemons.
● How to generate token in Slurm (HS256 algorithm only):

● Sites should consider generating JWTs outside of Slurm for automatic configuration of
clients

○ Example: https://slurm.schedmd.com/jwt.html#compatibility
○ The SLURM_JWT environment variable should not be set in user environments.

Slurm’s JWT Authentication

$ scontrol token
SLURM_JWT=eyJhbGciOiJIUz…………………

https://slurm.schedmd.com/jwt.html
https://slurm.schedmd.com/jwt.html#compatibility

● How to compile
○ Follow normal configuration procedure first
○ slurmrestd will be automatically compiled if all prerequisites are present

■ A
■

○ Possible to explicitly request slurmrestd
■

● slurmrestd is just another unprivileged binary callable by any user
○ Installed at EPREFIX/sbin/slurmrestd

■ Possible to change install path when calling configure:
●
●

● slurmrestd must be able to communicate with slurmctld and slurmdbd via TCP
connections.

slurmrestd - Slurm’s REST API implementation

../configure --enable-slurmrestd

../configure --sbindir=$NEW_INSTALL_PATH

../configure --prefix=$NEW_INSTALL_PATH

checking whether to compile slurmrestd... yes
checking for slurmrestd default port... 6820

https://slurm.schedmd.com/quickstart_admin.html

● Call slurmrestd directly from a shell script or from a in-cluster workflow manager
○ Avoids requiring any new authentication for the cluster

● Example (truncated):

slurmrestd - Invoked directly

$ echo -e 'GET /slurm/v0.0.40/jobs HTTP/1.1\r\n' | slurmrestd
HTTP/1.1 200 OK
Content-Length: 8758
Content-Type: application/json

{
 "jobs": [
 {
 "job_id": 192,
 "job_state": [
 "RUNNING"
],

● slurmrestd is HTTP standards compliant
○ Any tool that can work with a web server should work with slurmrestd

● Sites are suggested to setup a proxy between clients and slurmrestd
○ Use Nginx, Apache, or proxy du-jour

● Add caching
○ Configure caching in proxy as desired
○ Reduce strain on slurmctld and slurmdbd for repeated requests

● Always wrap communications with TLS
○ Never directly expose slurmrestd (or any of Slurm) to the Internet.

● Use authentication proxy functionality in the proxy to use existing site authentication
instead of MUNGE or Slurm’s JWT implementation.

○ Example: https://github.com/naterini/docker-scale-out/tree/master/proxy
○ Avoid users having to grab a new JWT by calling `scontrol token`

slurmrestd - Proxying

scontrol token

https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-subrequest-authentication/
https://httpd.apache.org/docs/trunk/mod/mod_proxy_http.html
https://github.com/naterini/docker-scale-out/tree/master/proxy

● Start daemon listening on IPv4 localhost TCP port 8080, IPv6 localhost TCP port 8080, IPv6
and IPv4 on all interfaces TCP port 8181, streaming Unix socket at /path/to/unix.socket with
Slurm-23.11 content plugins only using JWT authentication for a Slurm-23.11 install.

slurmrestd - Running as a listening daemon

$ env SLURM_JWT=daemon slurmrestd unix:/path/to/unix.socket 127.0.0.1:8080
ip6-localhost:8080 :8181 -a jwt -s slurmctld,slurmdbd -d v0.0.40

$ env SLURM_JWT=daemon slurmrestd unix:/path/to/unix.socket 127.0.0.1:8080
ip6-localhost:8080 :8181 -a jwt -s v0.0.39,dbv0.0.39

● Start daemon listening on IPv4 localhost TCP port 8080, IPv6 localhost TCP port 8080, IPv6
and IPv4 on all interfaces TCP port 8181, streaming Unix socket at /path/to/unix.socket with
Slurm-23.02 content plugins only using JWT authentication for a Slurm-23.02 install.

● Sites are suggested to use slurmrestd.service for systemd
○ Compiled and placed in build directory as etc/slurmrestd.service
○ Drop-in unit should be used to change values instead of modifying template.

■ Make sure to always update the systemd unit during an upgrade
● Example setup procedure:

slurmrestd - Running as a listening daemon via systemd

cp $BUILD_PATH/etc/slurmrestd.service /usr/lib/systemd/system/slurmrestd.service
mkdir -p /usr/lib/systemd/system/slurmrestd.service.d
cp local.conf /usr/lib/systemd/system/slurmrestd.service.d
systemctl daemon-reload
systemctl start slurmrestd

● Drop in example (local.conf): (restricts slurmrestd to only startup on host “rest)

[Service]
ExecCondition=bash -c 'test $(hostname -s) = "rest"'

Optimization

● Attempt to process queries as fast as possible by sacrificing warning checks and
readability for humans.

● This flag should only be used for production systems with production clients that
have already been fully tested without the fast flag active.

● Other enhancements may be added in future releases to improve processing speed.
● Example:

slurmrestd: Fast mode Parser (v0.0.40+,23.11+)

slurmrestd -d v0.0.40+fast -s slurmdbd,slurmctld $LISTEN_PORTS

● Generated JSON/YAML outputs are by default done with extra characters to improve
readability.

○ For some sites with large number of requests to slurmrestd, skipping unnecessary
whitespace characters can have considerable performance benefit in processing
time and reduced network usage.

● Environment variables to activate compact mode:
○
○

● Example:

slurmrestd: Compact JSON/YAML (v0.0.40+,23.11+)

env SLURMRESTD_JSON=compact SLURMRESTD_YAML=compact slurmrestd -d
v0.0.40 -s slurmdbd,slurmctld $LISTEN_PORTS

SLURMRESTD_YAML=compact
SLURMRESTD_JSON=compact

Client compatibility

● All paths in slurmrestd requests include the relevant plugin version:
○ Example: http://$HOST/slurmdb/v0.0.40/jobs

slurmrestd - Plugins lifetime matrix

Added in Slurm
release

Content Plugins (-s) Data_parser Plugin (-d)
[23.11+]

Removal in Slurm
release

21.08 v0.0.37,dbv0.0.37 23.11

22.05 v0.0.38,dbv0.0.38 24.08

23.02 v0.0.39,dbv0.0.39 v0.0.39 25.05

23.11 slurmctld,slurmdbd v0.0.40 26.02 (v0.0.40 only)

24.08 v0.0.41 26.11

● Unversioned slurmctld and slurmdbd content plugins added in Slurm-23.11 have no planned removal date.

● slurmrestd is currently tested using:
○ openapi-generator-cli generated python client

■ Tests uses static driver code against generated python clients
■ New test units are required for each data_parser version and the major version

of openapi-generator-cli.
■ Arguably the most popular client generator for OpenAPI due to heritage from

Swagger.
○ curl

■ Direct queries of slurmrestd using hand crafted requests
● Breaking changes of existing clients of the same version is considered a bug.
● General goal of reducing changes required for porting to newer versions.

○ Depending on the relevant change(s), requests in prior accepted formats will still be
accepted but with warnings sent to client.

Compatibility Testing

https://github.com/OpenAPITools/openapi-generator

● openapi-generator-cli created clients can not handle or refuse unexpected data types
○ In most cases, the client will assert but others just result in a segfault.

● OpenAPI standard includes oneOf() and anyOf() operators to allow for polymorphism
○ Allows return of null when a field isn’t set.
○ Slurm makes heavy use of polymorphism internally.

■ slurmrestd designed to handle polymorphic formats
● openapi-generator-cli client is not monolithic

○ Uses a plugin based approach to create generators for many languages
○ Clients for each language have varying level of OpenAPI standard support

● openapi-generator-cli generated clients will crash when handed (some) schemas using
oneOf()

OpenAPI Standard Compliance

● Slurm makes heavy use of Infinity or Unlimited, usually as a way to disable a limit.
● ECMA-404 JSON does not support a value of infinity (or ±infinity or ±NaN)

○ Most JSON parsers actually support infinity
■ Some silently convert to max of the internal type:

○ OpenAPI standard does not support (or explicitly ban) use of infinity
■ openapi-generator-cli python client will assert upon receiving infinity

● slurmrestd supports infinity (and NaN which is not used)
○ slurmrestd can automatically convert “inf”, “+inf”, “-inf”, “infinity”, “+infinity”,

“-infinity” string values to OpenAPI number format for inputs.
■ Warnings will still be issued about non-compliance with OpenAPI specification

for such format conversions for any given field.
■ slurmrestd should not output infinity or NaN to avoid breaking clients.

To Infinity and… Assert!

$ echo infinity | jq
1.7976931348623157e+308

● Several sites opened tickets against slurmrestd for broken clients
○ slurmrestd was written against the OpenAPI standard

■ In theory, the non-compliance to the OpenAPI standard of any one client
should be fixed by clients.

■ This effectively set the bar for entry too high for most sites who were not
writing their own clients.

● slurmrestd’s workarounds - (tagged with “NO_VAL” in parser/schema naming)
○ All use of oneOf() and anyOf() removed (20.11+)
○ Infinity, null, and NaN will not be dumped as result of a request (20.11+)
○ Infinity and null must be presented as booleans fields in representative object

(23.02+)
■ Example:

○ All fields present and populated in dumped responses (23.02+)

slurmrestd and the non-compliant clients?

{ “set”: true, “infinite”: true, “number”: 0}

OpenAPI Specification

● slurmrestd generates the OpenAPI Schema based on runtime arguments.
○ Sites should always specify the plugins via `-s`, `-a` and `-d` (23.11+) they plan to use

explicitly via arguments instead of the default of loading all plugins found for
production servers.

● Previously, we tried to have a single static specification as a static file (openapi.json).
○ Maintaining the OpenAPI Specification by hand in git ended up causing more

problems than it solved as git kept mangling the content and formatting.
○ Schemas are now generated by slurmrestd and the openapi.json is a basic template

in the source code (23.02+)
■ Same code that generates the output also generates the schema to keep

everything as coherent as possible.
■ The generated OpenAPI schemas at “http://$HOST/openapi/v3” should always

be used instead of the openapi.json in the source code.

OpenAPI Specification

● String Schemas with Enum (23.02+)
○ OpenAPI standard provides the Enum array to allow strings with well defined values

to enumerated out.
○ slurmrestd internally tracks most of these well defined strings as flags.

■ Many fields have been converted to flags to make it easier for users to know
possible values (23.11)

● Path parameters are now generated (23.11+)
○ All possible parameters should now be in generated OpenAPI specification including

enum strings.
● Boolean query parameters in the URI without a value will be considered to be true.

○ Example: http://$HOST/slurmdb/v0.0.40/associations?with_usage
○ openapi-generator-cli clients will need to pass “true” or “false” in the query objects

as the internal schema checker will reject a value of None.

Improving the OpenAPI Specification

● Format and layout of schemas are consistent between all Slurm releases where the
versioned plugin is present in the release:

○ A query to v0.0.40 endpoint in 23.11 should work the same as a query to v0.0.40
endpoint in Slurm 24.08.

○ Schemas changes during patchset releases are only done to correct breaking issues,
such as ones causing most openapi-generator-cli clients to crash.

○ Schemas between different data_parser versions are not guaranteed to be
compatible and in some cases may be entirely different. Make sure to test clients
when porting between versions.

○ OpenAPI Specifications are versioned the same as the data_parser versions and
have same version stability.

OpenAPI Specification Versioning

Questions?

