
Tuning Slurm the CSCS way
Slurm User Group 2018
Miguel Gila, CSCS
September 26, 2018

Three things we do a bit differently

1. RM-Replay
2. GPU Reporting with Slurm

3. Slurm command logging

Tuning Slurm the CSCS way 2

RM-Replay: A High-Fidelity Tuning,
Optimization and Exploration Tool for Resource Management

https://github.com/eth-cscs/slurm-replay

Maxime Martinasso, CSCS

To be published during SC18

https://github.com/eth-cscs/slurm-replay

RM-Replay

§ Like probably every other HPC center out there, we always have (recurrent)
users complaining about this:
§ “Why are there available nodes and my jobs are not running??”

§ Well, you can’t satisfy everyone, but you sure can tune the configuration to be
more effective in keeping users happier

§ Of course, this also depends on users doing something on their side. But that’s a
different story...

Tuning Slurm the CSCS way 4

RM-Replay

§ How can you evaluate changes in the Slurm configuration and how they affect
scheduling and the usage of the machine?

§ RM-Replay can replay the submissions done in a period of time and give you an
estimation of how busy the machine would have been with the new settings,
compared to the original configuration

§ Built as a Docker container. Can naturally be executed in Shifter

§ With a clever approach it uses unmodified Slurm source code with a few
additions to re-play scheduling much faster than real time

Tuning Slurm the CSCS way 5

How does it work?

Slurmd

Slurmctld

Clock

 counter

Job Runner
Stepd

Submitter

Node Controller

Ticker

Slurm

processes

Slurm-Replay

processes

1

2

3

4

5

6

Docker Container

Slurmdbd

7

SQL

database

Clock rate

Workload

trace

Slurm

configuration

files

Database dump:

users, accounts,...

Fig. 1. RM-Replay architecture description for the instance Slurm-Replay.
¿ the ticker increments the clock with a clock rate given as input. ¡ and
¬ the submitter and node controller programs read as input a workload trace
comprising jobs, reservations and node states. By using the clock counter they
submit their input to Slurm in a timely fashion. The same clock is used by the
slurmctld to update its internal state and to schedule the jobs. √ and ƒ
once a job is ready to start, slurmctld interacts with slurmd which will
spawn a stepd program. ≈ stepd will fork itself to execute the program
specified by the job which is a job runner program. The job runner program
will sleep for the duration of the job initially specified by the submitter
program at the job submission time. Once the job runner exits, slurmd
will notify slurmctld. ∆ slurmctld informs slurmdbd which updates
the job description in the SQL database. All processes belong to a Docker
container and apart from the SQL database they all use the clock counter
as a system clock. Slurm configuration and HPC system specific data are
not included in the container to allow the replacement of the HPC system
and avoid the necessity to rebuild the container. In this workflow, Slurm is
used in the same way as it has been designed for scheduling jobs on HPC
systems. Slurm processes could be easily replaced by another scheduler and
Slurm-Replay processes be adapted to it.

different programs and Slurm daemons is presented in Fig. 1.
For convenience and portability Slurm-Replay and Slurm are
packaged together inside a Docker container [4].

B. Clock
One key element of Slurm-Replay is the capability to replay

existing workloads using a faster clock than the system clock.
A program named ticker and a library have been created
to enable the new clock. The clock used inside the replay is
called the Replay-clock and it is represented by a simple
integer counter in a shared memory segment of the system.
The ticker program increments this counter by using a user-
specified rate of increment also called the clock rate. The clock
rate is the inverse of the frequency of the Replay-clock.

Slurm-Replay processes and Slurm processes all exclusively
use the Replay-clock. To minimize the change of Slurm code
base, Slurm-Replay provides a library that wraps time related
C functions such as sleep, gettimeofday and others
to use the Replay-clock. This library is pre-loaded by all
processes. When a process calls a time function from the pre-
loaded library for the first time, the time function will initialize
the shared memory segment. Similar techniques are used for
software testing [5] [6] [7].

C. Workload
A workload trace is a file containing a time series of job

submission information, reservation data and node states. It is
created based on a previous job schedule from a (production)

Fig. 2. Workload trace example. All elements that start during the workload
interval are inserted in the trace. A preset job is a job for which its submission
time and start time are before the workload start time and ends after the
workload start time. Such jobs are added to the trace with a submission time
and start time equal to the workload start time in order to represent the state of
jobs already running at the start time of the workload. Jobs submitted before
the workload start time and starting during the workload interval have also
their submission time set to the workload start time. A similar update of start
times for reservations and the change-of-state of nodes is applied.

resource manager database. A workload trace is created by
specifying a start and stop time. All trace elements i.e. jobs,
reservations and node state updates that start during that
interval of time are inserted in the trace. The end time of
a trace is the completion time of the last running job. If one
of the elements is submitted and starts before the trace start
time while ending after the trace start time, its submission and
eventually start time is set to the workload start time. Such an
element of the trace is called a preset. Preset elements are used
to represent an initial state of the system before the replay
starts. Fig. 2 summarizes the extraction of a trace from an
original schedule and presents the different attributes of the
workload elements.

D. Job submission and reservation

The program submitter role is to submit job and reserva-
tion information read from the workload trace to the resource
manager in a similar way as a user or system administrator.
The submitter uses the Replay-clock and submits jobs at
the time of their recorded submission time. The parameters of
the submission such as the number of nodes, account name or
time limit are identical to the one recorded in the trace. The
program specified during the job submission, to do the actual
job execution, is the job runner program having as input
the duration of the job in the workload trace and the clock
rate. Reservations are created at the beginning of the replay
and updated at their starting time.

In the case of Slurm-Replay, the submitter uses RPC calls
using the Slurm API to submit jobs and reservations.

Tuning Slurm the CSCS way 6

How do you use it?

Generate job
dependencies

Create workload off
slurmDBD

Get a unmodified
SlurmDBD dump

Run the replay
within the container

Analyze the result

Tuning Slurm the CSCS way 7

$ python ./extractlog.py > daint_jobdependency.txt

$ submitter/./trace_builder_mysql -p XXX -u YYY -s '2018-01-01 01:00:00’ \
-e '2018-01-01 01:30:00' -d slurmZZZ -h AAA.BBB.com -P 1234 -c daint \
-x daint_jobdependency.txt -f daint.20180101T010000_20180101T013000.trace

$ mysqldump -u XXX -p -P 1234 -h AAA.BBB.com slurmZZZ acct_table acct_coord_table \
qos_table tres_table user_table daint_assoc_table > slurmdb_tbl_slurm-17.02.9.sql

$ docker run --rm -it --volume /mydir/data:/replayuser/data \
mmxcscs/slurm-replay:replayuser_slurm-17.02.9
$./start_slurm.sh -w ..data/daint.20180101T010000_20180101T013000.trace \
-r 0.05 -n SR1

./trace_metrics -w replay.daint.20180101T010000_20180101T013000.trace -r 1
Range: min_start=1514761200 [0,1] start_range=1514761200 end_range=1514764800 all=583 preset=529 (otherp=1)

[ALL=583] Makespan=3600 Util=0.83171724 Avg_Wait=(568.30769231,3754.01788857,13,207,1467,6.6056)
Dispersion=0.13148193 Slowdown=0.00188138 Throughtput=271

[MC=176] Makespan=3600 Util=0.50134048 Avg_Wait=(135.09523810,405.52628944,21,207,669,3.0018)
Dispersion=0.24988875 Slowdown=0.00772033 Throughtput=26

[GPU=406] Makespan=3600 Util=0.94495123 Avg_Wait=(175.03846154,760.43499697,26,635,1467,4.3444)
Dispersion=0.18711216 Slowdown=0.00270158 Throughtput=245

How do we want to use it?

§ During development, we’ve used the tool to identify two important points:
§ Using the switch options increases the fragmentation of the schedule reducing by 10% the

job throughput

§ When users provide a better runtime accuracy of their jobs, this decreases the likelihood that
their jobs will have a long waiting time in the queue

§ Ideally, an auto-tuning framework could potentially make use of this tool in order
to automatically configure Slurm and react to change in the job mix

§ But for now the plan is to put this on a dedicated system and use it analyze major
changes to our configuration and what-if scenarios

Tuning Slurm the CSCS way 8

GPU Reporting[*]

[*] Also presented by Nick Cardo at the Cray User Group 2018

Describing the problem

§ A batch job is submitted to a compute node containing a GPU
§ Did they utilize the GPU or just the node’s processor?

§ Easy to tell if a GPU was requested
§ Can check GRES
§ Can check node name

§ Hard to tell if a GPU was used from existing accounting

§ How to report GPU usage in a meaningful way?

Tuning Slurm the CSCS way 10

§ nvidia-smi

§ RUR
§ Tool present only on Cray systems
§ Can be used to aggregate data coming

from different plugins, including GPU
counters

§ Needs modifications to be used with
native Slurm and not ALPS

Tuning Slurm the CSCS way 11

Available tools

§ Slurm prolog/epilog
§ Used to call Cray RUR to start/stop counter

collection

How to store data in a meaningful way?

§ Store data in Slurm job accounting record
§ Keeps all job data together, no separate database or utilities
§ Reuse an existing text field – AdminComment
§ Use JSON format to store multiple pieces of data

§ Data is sent to SlurmDBD with a modified RUR plugin that runs at job end

§ Extractable with sacct
§ sacct –o AdminComment

Tuning Slurm the CSCS way 12

/usr/bin/mysql -h HOST -u DBUSER -pDBPASS DATABASE -e 'update %s_job_table set admin_comment=\"%s\" where
id_job=%s and id_user=%s'" % (cluster,jout.replace("\"",'\\"'),jobid,uid)

Batch Job Summary Report

§ How to report GPU usage in a meaningful way?

Tuning Slurm the CSCS way 13

Open questions

§ RUR is nice... But perhaps there could be a way to have similar functionality
embedded in Slurm itself?

§ Would slurmd/slurmctld be able to do such aggregation?

§ What about database fields for additional accounting data?

§ Jobcomp/ElasticSearch plugin?

Tuning Slurm the CSCS way 14

Slurm command logging

Describing the problem

§ Services have access to dedicated nodes that query Slurm and/or submit jobs
§ Continuous Integration Systems (Jenkins, etc.)
§ Special frontends (UNICORE, ARC)

§ Users have access to login nodes to submit jobs
§ Daint has a few login nodes
§ Intended to allow users to submit jobs and build apps
§ But users can basically do whatever they want

§ So, what do you do when
§ User commands start timing out everywhere without any apparent reason?
§ Slurmctld logs show it being busy putting tasks on CNs for hours?

§ This somehow tends to happen during weekends or at night...

Tuning Slurm the CSCS way 16

#!/bin/bash
while :
do
clear
squeue | grep JOBID
squeue | grep ${USER}
sleep 1
done

Some loops are evil!

sacct -j XXXXXX |wc -l
25337

Jobs with bajillions of tasks

[2018-09-25T14:41:07.832] debug: _slurm_rpc_job_pack_alloc_info: JobId=840324 NodeList=nid00007 usec=2

[2018-09-25T14:41:07.841] debug: laying out the 1 tasks on 1 hosts nid00007 dist 1
[2018-09-25T14:41:07.841] debug: reserved ports 24790 for step 840324.6
[2018-09-25T14:41:08.592] debug: freed ports 24790 for step 840324.6
[2018-09-25T14:41:08.662] debug: _slurm_rpc_job_pack_alloc_info: JobId=840324 NodeList=nid00007 usec=2
[2018-09-25T14:41:08.671] debug: laying out the 1 tasks on 1 hosts nid00007 dist 1

[2018-09-25T14:41:08.671] debug: reserved ports 24791 for step 840324.7

#!/bin/bash
#SBATCH -N 512
#SBATCH --time=05:05:05
while true; do

srun /usr/bin/false
done

Loops with failing tasks...

How do we know what users do?

§ Ideally, we would love Slurm to be able to rate-limit the amount of RPCs per
user/host/account

§ But first, how can we identify precisely what users are doing?
§ Yes, auditd is an option...
§ But what’s the performance impact of enabling this on Cray’s version of the OS?

§ What else is out there?

Tuning Slurm the CSCS way 17

Slurm patch to log user calls

Tuning Slurm the CSCS way 18

What are our users doing?

Tuning Slurm the CSCS way 19

What are our users doing?

Tuning Slurm the CSCS way 20

What are our users doing?

Tuning Slurm the CSCS way 21

What are our users doing?

Tuning Slurm the CSCS way 22

This new information is very useful

§ We’ve detected a few good use cases where we have been able to help users
improve their usage of available tools
§ Corner cases where a service needs to query a few hundreds of jobs every few minutes
§ Users that abuse Shell loops or watch because they don’t know how things work below
§ Usage of scontrol + awesome grep+awk combinations instead of sinfo
§ Insane amounts of parallel sruns, which lead us to adapt GREASY[*]

§ Now we can identify, quickly, when a submission script or a job goes rogue

§ Believe it or not, there is so much to learn from users!

Tuning Slurm the CSCS way 23

[*] https://user.cscs.ch/tools/high_throughput/

https://user.cscs.ch/tools/high_throughput/

What now?

§ Does anybody really need to have squeue open, refreshed every second, 24/7
(even at night) to see if his/her jobs are running??

§ Is there any way to rate-limit what users do?
§ We love memcached [*], can it be used here somehow?

§ However, this partially highlights that there are valid use cases for alternative
ways to access Slurm:
§ RESTful API
§ Fully supported Python/Go bindings

§ PySlurm is really cool, give it a try!

Tuning Slurm the CSCS way 24

[*] See Nick Cardo’s presentation at SLUG17 (https://slurm.schedmd.com/SLUG17/Cardo-SLUG2017.pdf)

https://slurm.schedmd.com/SLUG17/Cardo-SLUG2017.pdf

Thank you for your attention.

