

Slinky: Slurm in Kubernetes
Performant AI and HPC Workload Management
Tim Wickberg – tim@schedmd.com
@wickberg on CNCF/Kubernetes Slack
Chief Technology Officer, SchedMD

mailto:tim@schedmd.com

Slinky: Slurm in Kubernetes
Performant AI and HPC Workload Management

Skyler Malinowski, Alan Mutschelknaus,
Marlow Warnicke, Tim Wickberg

Introduction

What is Slurm?

● Leading HPC Workload Manager
○ Workload Manager = Scheduler + Resource Manager

■ Roughly equivalent to "Orchestrator"
○ Scheduler:

■ Prioritize and decide which jobs to run on which parts of the system
○ Resource Manager:

■ Track node state and resources
■ Launch jobs

● Manages the majority of the TOP500 supercomputers
○ Also manages most AI/ML training workloads
○ Scales beyond 15,000 nodes in the cluster

● Open-Source
○ GPL-v2+

5

Who are SchedMD?

● Developers of Slurm – and Slinky
● Spun off from LLNL in 2012 to support Slurm's rapid adoption

○ Founders are Moe and Danny, the "MD" in SchedMD
● SchedMD provides commercial support for Slurm, alongside

○ Training
○ Consultation
○ Custom Development

6

What is Slinky?

7

What is Slinky?

● Toolkit of projects to integrate Slurm into Kubernetes
● Open Source

○ Apache-2.0
● Three major components:

○ Slurm-operator
○ Slurm-bridge
○ Associated tooling

8

What is Slinky?

● Slurm-operator
○ Kubernetes Operator for managing Slurm clusters
○ Manage Slurm compute nodes through Kubernetes pods

■ Autoscale in response to Slurm system load
○ Released in November 2024

■ v0.1.0 - November 2024
■ v0.2.0 - March 2025
■ v0.3.0 - June 2025

9

What is Slinky?

● Slurm-bridge
○ Kubernetes Scheduling Plugin
○ Enable Slurm scheduling of both Kubernetes Pods and Slurm Jobs on converged

clusters
○ Will be released in June 2025

■ Will depend on Slurm 25.05 release (May 2025)
■ In early access with SchedMD customers now

10

What is Slinky?

● Associated Tooling
○ Slurm Client

■ Golang Client Library for Slurm's REST API
○ Slurm Exporter

■ Prometheus Exporter for Slurm's REST API
■ Metrics to enable autoscaling

○ Helm Charts
○ Container Images

11

Slinky Repositories

https://github.com/SlinkyProject
12

https://github.com/SlinkyProject

 Cloud Native, HPC, and Slurm

a.k.a, "Why is an HPC
scheduling guy even here
presenting?"

Disclaimer

● Following slides are gross oversimplification of two complex and intertwined communities
● For every point I make there are multiple counter-examples
● Meant to provide broad context, at the expense of some degree of fidelity

15

HPC versus Cloud Native

● Different assumptions from the HPC and Cloud Native communities have driven different
solutions in the workload scheduling space

● Slinky sits at the intersection of the two realms
● At a very high level, the perspectives can be summarized as:

○ HPC assumes finite resources, infinite workload demand
○ Cloud native assumes infinite resources, finite workload demand

16

"HPC assumes finite resources, infinite workload demand"

● Researchers have seemingly endless simulation work
● Systems cannot simultaneously execute all outstanding jobs
● Queue prioritization is paramount

○ Results in complex priority schemes
■ Granular limits on resource usage

● Largest simulations are presumed to need large collections of GPUs, CPUs, and nodes
● Jobs have time limits

○ Critical - and easily overlooked - aspect for efficiently anticipating future system use
■ "Backfill" scheduling ensures large jobs aren't permanently deferred

● Support for multi-node jobs - up to thousands of nodes - are a core component
○ HPC systems call these… "jobs"

● Systems are more statically defined
○ "Cloud bursting" or other auto-scaling methods have been retrofitted into the

designs

17

"Cloud native assumes infinite resources, finite workload demand"

● Cloud orchestration - Kubernetes - was designed for micro-services
● All pods presumed expected to be running simultaneously to meet current service

demands
● Scale horizontally by running additional pods and load-balancing between them

○ Tightly-coupled processes across multiple nodes are not a core design goal
■ Multi-node jobs are "gang scheduled"

● Not natively supported – require scheduler extensions to manage
● Pods run indefinitely

○ Until external load monitoring determines they should be terminated
● Capacity issues are managed by requesting additional resources

○ Support for queuing work not an explicit design goal
● Support for application resilience and dynamic resource management are presumed

○ Drives different scheduling semantics – affinity / anti-affinity – than HPC

18

Why converge the two?

● Systems faced with increasing demand for batch-style workloads
● AI/ML folks are running Kubernetes for Inference

○ But Slurm for Training workloads
● More traditional HPC systems are being asked to support more flexible workloads

○ But still need resource constraints, efficient queueing, and enough policy control to
manage finite system resources

● Running and maintaining both traditional HPC and Cloud Native clusters simultaneously
wastes resources

● How can we start to converge the two environments?
● Slinky exists at intersection of the HPC and Cloud Native environments

○ Slurm Operator provides for a traditional HPC environment within an overarching
Kubernetes system

○ Slurm Bridge provides for HPC scheduling semantics for both traditional Slurm batch
jobs and emerging cloud-native workloads

■ And gives systems engineers a central place to prioritize both

19

Additional Capabilities

● Slurm can provide scheduling advantages for pure-Kubernetes environments
○ Efficient multi-node scheduling and resource allocation
○ Planning around future system state - "backfill" - allowing deferred execution of

multi-node workloads while not blocking current jobs from scheduling
○ Network topology management – e.g., for NVLink interconnects – ensuring optimal

placement for multi-node workloads
■ And ensuring de-fragmentation

20

Slurm Operator

Slurm Operator Use Cases

● Manage Slurm clusters within a Kubernetes environment
● Each compute node maps to a Kubernetes pods running the slurmd process
● Support autoscaling based on cluster utilization metrics
● Run Slurm jobs natively

○ Users interact with Slurm through traditional CLI tools
■ Through one or more "login node" pods they can SSH into

● Kubernetes is not involved in scheduling or managing compute jobs
○ Slurm runs Slurm workloads directly

■ Allows for fine-grained resource limits
■ Backfill scheduling
■ Respect network topology - especially for NVIDIA NVL interconnects

○ Allow large training workloads to run efficiently
○ Provide access to traditional HPC tooling such as PMI/PMIx

22

Documentation

● Initial documentation – https://slinky.schedmd.com/

23

https://slinky.schedmd.com/

Big Picture

1. Install Slinky Custom Resource
Definitions (CRDs)

2. Add/Delete/Update Slinky
Custom Resource (CR)

3. Network Communication

24

Custom Resources

● Cluster CR
○ Represents a Slurm cluster, by Slurm REST API (slurmrestd)
○ Define server URL and JWT auth token secret
○ Reconciles to internal Slurm client

● NodeSet CR
○ Represents a set of Slurm nodes (slurmd)
○ Define pod spec, Slurm specific options
○ Reconciles to Kubernetes pods

25

Slurm Operator – Cluster Client

1. User installs a Cluster CR
2. Cluster Controller creates Slurm Client

from Cluster CR
3. Slurm Client polls Slurm resources (e.g.

Nodes, Jobs)
4. Update Cluster CR Status

26

Slurm Operator – NodeSet Scale-Out

1. User installs NodeSet CR
2. NodeSet Controller creates NodeSet

Pods from NodeSet CR pod spec
a. On process startup: the slurmd

registers to slurmctld
3. Update NodeSet CR Status

a. Kubernetes NodeSet Pod Status
b. Slurm Node Status

27

Slurm Operator – NodeSet Scale-In

1. User updates NodeSet CR replicas
2. NodeSet Controller cordons NodeSet

pod scale-in candidates:
a. Candidates are determined based

on Slurm node and job information
b. Cordoned pods will be drained in

Slurm, in preparation for safe
termination and deletion

3. NodeSet Controller terminates NodeSet
pod after fully draining a candidate

a. On pod preStop: Slurm node
deletes itself from Slurm

4. Update NodeSet CR Status
a. Kubernetes NodeSet Pod Status
b. Slurm Node Status

28

NodeSet Auto-Scale

1. Metrics are collected and exported
2. Horizontal Pod Autoscaler (HPA) scales

NodeSet CR replicas, based on:
a. Current metrics data
b. User defined scaling policy

3. The Slurm Operator reconciles the
adjusted NodeSet CR replicas value:

a. Scale-in (replicas reduced)
b. Scale-out (replicas increased)

29

Slurm Operator
Demo Screenshots

31

32

Slurm Bridge

Why Slurm Bridge

● Kubernetes lacks fine-grained control of native resources (CPU, Memory)
○ HPC and AI training workloads are generally more efficient when dedicated

resources are assigned
■ Avoid jitter and cache contention

● Ability to have fast scheduling that is not possible in kubelet
● Ability to use both Kubernetes and Slurm workloads on the same set of nodes

○ Allow researchers to use their preferred tooling, without needing separate dedicated
compute systems

34

Why Not Slurm Bridge

● Slurm Bridge is not meant to replace the default scheduler
○ Another alternative

■ Kubernetes API makes it possible to provision multiple schedulers
■ Same approach taken by Kueue, Volcano, MPI Operator, …

○ However… as the Kubernetes API doesn't provide a clean way to sub-divide
resources within a node, it does assume that - for any node it's meant to schedule -
that is is the only workload scheduler

■ Disregard core infrastructure - such as daemon sets - that are still scheduled
through the default scheduler

● Slurm Bridge may not be appropriate for your system
○ Intended for clusters that are predominantly dedicated to batch-oriented process

■ Or closely related domains - such as AI/ML interference
● Especially for managing multi-node inference workloads

35

Domain Pools

● Kubernetes manages its nodes
○ Running kubelet

● Slurm manages its nodes
○ Running slurmd

● The Slurm-Bridge manages
workloads running on converged
nodes shared by both

● Nodes are not required to run
both, but for most deployments
they likely will

36

Domain Pools - Expected Deployment Pattern

37

Design Goals

● Run both Slurm and Kubernetes workloads on pools of nodes
● Slurm bridge will translate resource requirements for Kubernetes workloads into Slurm jobs

○ Reconstruct multi-node workloads, and submit single job to Slurm
■ PodGroup and JobSet currently

● Likely LeaderWorkerSet as well
● Handle Device Plugins, such as GPUs
● Filter out nodes that Slurm is not to manage, through the current set of labels provided
● Filter out pods out via designated namespaces

○ Will have an allow-list of namespaces we handle
■ "slurm-bridge" in our demo

38

Restrictions

● Each node can run Slurm or Kubernetes workloads, not both concurrently
○ The kubelet will manage Kubernetes pods
○ The slurmd will manage Slurm jobs

● Configure the Slurm-bridge plugin as Kubernetes scheduling profile
○ Plugin will take control of all workloads in allow-list of namespaces
○ The Default Scheduler will handle all other workloads

● Slurm can only schedule to nodes with slurmd running
○ Even if you don't want to run native Slurm workloads
○ Need detailed CPU information that the Kubernetes API doesn't provide

■ Can use the Slurm Operator to manage these slurmd processes
● Or run slurmd directly on base-metal

39

Big Picture

● Slurm-Bridge represents k8s
pod(s) as a Slurm job, for
scheduling purposes

● Kubernetes handles pods
launch, after scheduling

● Slurm handles job scheduling
● Both Slurm and Kubernetes

can still schedule other
workload on non-Bridged
Nodes

40

Slurm Bridge Scheduler + Controller

● Responsible for managing Slurm as the source of truth
and enforcing scheduling decisions from Slurm

● Slurm Scheduler Plugin
○ Hooks into the Kubernetes scheduling API to

utilize the Slurm Control Plane to make
scheduling decisions

● Slurm Workload Controller
○ Reconciles pod drift/desync using Slurm as the

source-of-truth for Slurm scheduled workloads

Kubernetes
API

Slurm
REST API

Slurm
Scheduler

Plugin

Slurm Bridge

Slurm
Workload
Controller

41

Slurm Bridge
Kubernetes Scheduler Plugin

Kubernetes Scheduler Framework

43

Slurm Scheduler Plugin

● Only implement PreFilter/Filter and Bind
● PreFilter to capture new pod requests

○ To translate Pod into Slurm job and submit into Slurm's queues
● Bind to communicate the node allocation back to Kubernetes

○ Technically managed by the workload controller, not the scheduler plugin
● Does not implement all Kubernetes scheduling primitives

○ E.g., affinity/anti-affinity aren't available
○ Avoids some performance pitfalls of the Kubernetes scheduling API

44

Slurm Bridge
Scheduler Plugin

Slurm Bridge
Workload Controller

Slurm Scheduler Plugin - Sequence

● Translate a pod spec to Slurm job spec
● Submit this "placeholder" job to Slurm
● Wait for placeholder job to start
● Bind the pod to allocated node

45

Slurm Bridge
Workload Controller

Slurm Workload Controller - Sequence

● Workload controller reconciles state
between Kubernetes and Slurm
control planes

○ Also issues Bind() calls against
the pod once the placeholder
Slurm job starts

● Slurm is the source-of-truth for
Bridged Nodes

● Responsible for cleaning up:
○ Slurm jobs after pods

complete/terminate
○ Pods after Slurm job

complete/terminate

47

Slurm Bridge
User's Perspective

Slurm Bridge - User's Perspective

49

Slurm Bridge
Demo Screenshots

apiVersion: v1
kind: Pod
metadata:
 name: pause-pod
 namespace: slurm-bridge
 annotations:
 slinky.slurm.net/job-name: "pausepod"
spec:
 containers:
 - name: pause-pod
 image: registry.k8s.io/pause:3.6

$ kubectl apply -f pause-pod.yaml.debug
pod/pause-pod created

$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 16 slurm-bri pausepod slurm R 0:11 1 slurm-bridge-1

$ kubectl get pods -o wide -n slurm-bridge
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pause-pod 1/1 Running 0 17s 10.244.2.12 slurm-bridge-1 <none> <none>

51Submission of a single-node pod. Scheduled immediately on the empty cluster, node placement communicated back to Bind()

apiVersion: v1
kind: Pod
metadata:
 annotations:
 kubectl.kubernetes.io/last-applied-configuration: ...
 slinky.slurm.net/job-name: pausepod
 slinky.slurm.net/slurm-node: slurm-bridge-1
 creationTimestamp: "2025-03-26T12:38:17Z"
 finalizers:
 - scheduler.slurm.net/finalizer
 labels:
 scheduler.slinky.slurm.net/slurm-jobid: "16"
 name: pause-pod
 namespace: slurm-bridge
 ...
spec:
 containers:
 ...
 schedulerName: slurm-bridge-scheduler
 tolerations:
 key: slinky.slurm.net/managed-node
 operator: Equal
 value: slurm-bridge-scheduler

52slurm-node annotation allows for flexible mapping between Slurm and Kubernetes names. Here they're equivalent.
Note the corresponding slurm-jobid label which is used to track status of the placeholder job.

apiVersion: scheduling.x-k8s.io/v1alpha1
kind: PodGroup
metadata:
 name: nginx-pg
 namespace: slurm-bridge
 annotations:
 slinky.slurm.net/job-name: pgReplicaset
spec:
 minMember: 2

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: nginx-pg
 namespace: slurm-bridge
 labels:
 app: nginx-pg
spec:
 replicas: 2
 selector:
 matchLabels:
 app: nginx-pg
 template:
 metadata:
 name: nginx-pg
 namespace: slurm-bridge
 labels:
 app: nginx-pg
 scheduling.x-k8s.io/pod-group: nginx-pg
 spec:
 containers:
 - name: nginx-pg
 image: nginx
 resources:
 limits:
 cpu: 3000m
 memory: 500Mi
 requests:
 cpu: 3000m
 memory: 500Mi

53Multi-pod / multi-node workload controlled through replicas. Will be translated into a single placeholder job requiring 2 nodes.

Slurm Bridge Scheduler Pods
NAME READY STATUS RESTARTS AGE NODE
nginx-pg-fwhdc 1/1 Running 0 14s slurm-bridge-1
nginx-pg-rq2kk 1/1 Running 0 14s slurm-bridge-2

PodGroup Status
NAME PHASE MINMEMBER RUNNING SUCCEEDED FAILED AGE
nginx-pg Running 2 2 14s

Slurm sinfo
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
17 slurm-bridge pgReplicaset slurm R 0:13 2 slurm-bridge-[1-2]

Slurm squeue
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
slurm-bridge up infinite 2 alloc slurm-bridge-[1-2]
slurm-bridge up infinite 1 idle slurm-bridge-0

54Translated into 2 node job. Slurm natively understands multi-node workloads and efficiently schedules them.

$ cat podgroup.yaml.debug

apiVersion: scheduling.x-k8s.io/v1alpha1
kind: PodGroup
metadata:
 name: sleep-pg
 namespace: slurm-bridge
 annotations:
 slinky.slurm.net/account: slurm
 slinky.slurm.net/job-name: podgroupSleep
spec:
 minMember: 2

apiVersion: v1
kind: Pod
metadata:
 name: sleep1
 namespace: slurm-bridge
 labels:
 app: sleep-pg
 scheduling.x-k8s.io/pod-group: sleep-pg
spec:
 restartPolicy: Never
 containers:
 - name: my-container
 image: busybox
 command: ["sh", "-c", "sleep 20 && exit 0"]

apiVersion: v1
kind: Pod
metadata:
 name: sleep2
 namespace: slurm-bridge
 labels:
 app: sleep-pg
 scheduling.x-k8s.io/pod-group: sleep-pg
spec:
 restartPolicy: Never
 containers:
 - name: my-container
 image: busybox
 command: ["sh", "-c", "sleep 20 && exit 0"]

55Second multi-node workload, this time with the pods explicitly enumerated.

Slurm Bridge Scheduler Pods
NAME READY STATUS RESTARTS AGE NODE
nginx-pg-fwhdc 1/1 Running 0 91s slurm-bridge-1
nginx-pg-rq2kk 1/1 Running 0 91s slurm-bridge-2
sleep1 0/1 Pending 0 4s <none>
sleep2 0/1 Pending 0 4s <none>

PodGroup Status
NAME PHASE MINMEMBER RUNNING SUCCEEDED FAILED AGE
nginx-pg Running 2 2 91s
sleep-pg Scheduling 2 5s

Slurm sinfo
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
17 slurm-bridge pgReplicaset slurm R 1:30 2 slurm-bridge-[1-2]
18 slurm-bridge podgroupSleep slurm PD 0:00 2 (Resources)

Slurm squeue
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
slurm-bridge up infinite 2 alloc slurm-bridge-[1-2]
slurm-bridge up infinite 1 idle slurm-bridge-0

56Note that this second workload is pending - insufficient nodes available. Slurm will schedule this once resources are available.

Slurm Bridge Scheduler Pods
NAME READY STATUS RESTARTS AGE NODE
sleep1 1/1 Running 0 44s slurm-bridge-1
sleep2 1/1 Running 0 44s slurm-bridge-2

PodGroup Status
NAME PHASE MINMEMBER RUNNING SUCCEEDED FAILED AGE
sleep-pg Running 2 2 45s

Slurm sinfo
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
18 slurm-bridge podgroupSleep slurm R 0:10 2 slurm-bridge-[1-2]

Slurm squeue
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
slurm-bridge up infinite 2 alloc slurm-bridge-[1-2]
slurm-bridge up infinite 1 idle slurm-bridge-0

57First workload completed, second workload is now running.

Slurm Bridge Scheduler Pods
NAME READY STATUS RESTARTS AGE NODE
sleep1 0/1 Completed 0 75s slurm-bridge-1
sleep2 0/1 Completed 0 75s slurm-bridge-2

PodGroup Status
NAME PHASE MINMEMBER RUNNING SUCCEEDED FAILED AGE
sleep-pg Finished 2 2 77s

Slurm squeue
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
slurm-bridge up infinite 3 idle slurm-bridge-[0-2]

58Everything complete. Workload controller has ensured system state is kept in sync. Pods can be deleted, or placeholder jobs
cancelled or timed out, and will reconcile system state between the two.

Future Work

Future Work

● Further refinement, documentation, and testing of the Slurm Operator
● Work with the Kubernetes community to be able to handle fine-grained control and

understanding of native resources
○ "DRA-for-Cores"
○ Publish CPU affinity mapping for other DRA devices

● Allow for Slurm to operate as a pure Kubernetes scheduler
○ Remove requirement for slurmd daemon on nodes managed by the Slurm Bridge

■ Requires new "external" node status within Slurm to indicate Slur's own
resource management layer is disabled

○ Requires extension to the Slurm Workload Controller to automatically create
"external" nodes within Slurm

● Investigation into better coordination with Autoscaler

60

CPU affinity - HPC requirements

● HPC workloads have a broad range of ways to model their internal application layouts
● HPC workload managers evolved to support a huge range of options
● Subset of these allocation options:

○ number-of-tasks, number-of-nodes, number-of-tasks-per-node
○ cpus, cpus-per-gpu, cpus-per-node, cpus-per-task
○ gpus, gpus-per-node, gpus-per-task, gpus-per-socket
○ sockets-per-node, threads-per-core
○ gpu-to-cpu-pinning

61

CPU resource management

● CPU resource management
○ Significant functional gap compared to Slurm's native resource management
○ CPU affinity has significant performance impacts on most workloads

■ Managed by through the Linux cpuset cgroup controller
● Kubernetes lacks centralized planning for CPUs

○ Delegated to the runtime
■ But precludes effective backfill scheduling

○ Discussing different models with the device management wg and others
■ May publish a POC DRA driver for CPUs while discussing whether something

should be pushed into core Kubernetes

62

Questions?

Thank You

https://github.com/SlinkyProject
64

https://github.com/SlinkyProject

